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By using a parametric representation of the stable and unstable manifolds, we 
prove that for some given values of the parameter (in particular in the case first 
investigated by H~non) the H~non mapping has a transversal homoclinic orbit. 
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1, INTRODUCTION 

Since H~non's analysis, (0 considerable interest has been devoted to the 
mapping of the plane into itself: 

T ( x ,  y )  = ( y  + 1 - ax2 ,bx)  (1.1) 

H6non studied T in the case a = 1.4, b -- 0.3; numerical investigations of 
(1.1)(1-3) have shown that for these and other values of the parameters the 
system (1.1) seems to exhibit a "chaotic behavior." This behavior was 
related via a theorem by Smale, to the existence of a transversal homoclinic 
orbit. (s) Smale's theorem (4) (see also Ref. 5) states that if a diffeomorphism 
F has a transversal homoclinic orbit, then there exists a Cantor set A in 
which, for some M, F M is topologically equivalent to the shift automor- 
phism. Curry, in Ref. 3, gave numerical evidence to the existence of a 
transversal homoclinic orbit in the case a = 1.4, b = 0.3. More recently 
Marotto (6) proved analytically that for a > 1.55 and b small enough such 
an orbit exists; however, Marotto's proof does not provide an explicit range 
of b values for which his results hold. Here, by using a parametric 
representation of the stable and unstable manifolds and with the aid of a 
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computer, used as a tool for obtaining rigorous estimates, we prove that a 
transversal homoclinic orbit exists for a = 1.4, b = 0.3. 

N o t e :  After the completion of this work we have received a paper by 
Misuriewicz and Szewc (v) in which the existence of a homoclinic orbit for 
the H6non mapping is proved, in the case a = 1.4, b = 0.3, by using 
computations simpler than those presented here; nevertheless we think it is 
not useless to present our proof for two reasons: (a) our method allows us 
to plot the stable and unstable manifolds of the mapping, and this could be 
of some interest in itself; (b) the proof given in Ref. 7 is based on the 
existence of a quadrilateral mapped into itself by the H6non map; such a 
quadrilateral does not exist if, for example, the parameter a is increased 
enough, while our method, in principle, works whenever a homoclinic point 
exists. 

2. STABLE AND UNSTABLE MANIFOLDS 

Let P o -  (~o,~0) be one fixed point of the mapping (1.1). We denote 
by Oil, Ol2 the eigenvalues of the derivative of T at P0. If, as we suppose, 
a >3(1 - b) 2 we can choose IOlll > l, IOl21 < 1. 

The stable and unstable manifolds of T at Po are characterized, by the 
stable manifold theorem, as the images of two immersions 7 i : R - ~ R  2 
(i = 1,2) such that 

( r  o y i ) ( t )  = y,(Ol, t) (2.1) 

If we put "~i(t) = (~i(t),  ~7~(t)), (2.1) can be written 

Tli(t ) + 1 - a~i2(t)  = ~i(olit), 

Hence we have 

+ 1 - ab 2  (Oli 0 

b~i( t  ) = ~ i (a i t )  (2.2) 

= b-1*1,(ol2t) (2.3) 

It is known (see forexample  Ref. 5) that the ~i'S a re  analytic. We compute 
explicitly the coefficients of the expansion 

~i ( t )  = ~o + ~ c~ ~  (2.4) 
n = l  

By substituting (2.4) in (2.3) we get 

n >1 1 c(, i) = ab - 2  2~0c(i) + .~(i)~(i) "~ b -  a i c n t~k t ' n - k  Oli n 1 2n ( i )  (2.5) 
k = l  

For n = 1 (2.5) gives 

a2i + 2ab  l~ool i - b = O (2.6) 
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(i.e., the equation defining the eigenvalues ai). The choice of c~ i) is arbitrary 
and fixes the scale of the parameter t; we put cl 0 = 1. Equation (2.5) gives, 
by recurrence, the other c~ (~ We have 

n-- I  

n > 1 e~ 0 = t~.,, ~ e(~Oe~k (2.7) 
k = l  

where/?.,i is defined by 

~,,7i 1= - a - ' b a 2 ( 1  - a ] a , - " ) ( 1 -  Ol20~i-n ) (2.8) 

From now on we denote by ~( t )  the function obtained by substituting 
(2.7), (2.8) in (2.4). Since a], a2=/= 1 it is easy to check, via an exponential 
upper bound on the /3,,i, that the radius of convergence 0 of (2.4) is 
different from zero. On the other hand it is clear that if It I, laitl, laiZtl < o, 
~Ti(t) satisfies (2.3); hence ~i(t) is an entire function [otherwise one could use 
(2.3) for extending r/e(t ) analytically to the whole complex plane]. 

By computing a suitable number of c~ (~ the expansion (2.4) can be used 
to get a diagram of the stable and unstable manifolds. A segment of the 
two manifolds corresponding to the right fixed point of T in the case 
a = 1.4, b = 0.3 is represented in Fig. 1. 

3. HOMOCLINIC POINTS 

The diagram in Fig. 1, obtained truncating the series (2.4) at the term 
n - -  100, gives evidence of the existence of homoclinic points in the case 
a = 1.4, b = 0.3. In this section we give a proof of this fact. 

We consider the unstable and stable manifolds, "/1 and 3'2, of T at the 
right fixed point P0 = (40 = 0.63135447 . . . .  ~/0 = 0 .18940634. . .  ). In par- 
ticular we consider the segments of 3'1 and 3'2 contained between the points 
Pl = 3'1(-0.42),P2 = 3'1(-0.41), Ql = 3'2(-0.61), Q2 = 3'2(-0.57) �9 (These 
segments were empirically chosen as an ansatz from the numerical compu- 
tations: their intersection, whose existence we are proving, is represented in 
Fig. 1 by the point O.) We put t o = -0.415,  11 = [ - 0 . 4 2 , - 0 . 4 1 ]  and we 
write 

= +  ,R(0 (3.1) 
where 

n=21 

In Appendix A the following bounds are proved: 

maxl~,R(t)l < 10 -3, maxi~,R'(t)] < 2.6 x 10 -2 
It[<l /tl<l 

maxl~iR"(t)[ < 1.1, max Win'"(t)[ < 63 (3.2) 
I t l<l  It]<1 
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A=I .4 B=0 .3  
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Fig. 1. 71 together with 72(-27,2)  for a = 1.4, b = 0.3. The two asterisks represent the two 
fixed points of T. The homoclinic point whose existence is proved in Section 3 is at O. 
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Analogous inequalities concerning ~i( t )  can easily be obtained by using 
(2.2). 

On the other hand, explicit computations (made with the aid of the 
computer, by using the estimates on the computational error given in 
Appendix B) give 

20 

max[T/~~ < ~ n ( n  - 1)(n -2)1c~ ')1 < 177 
] t l< l  n = 3  

20 
7/~~ = ~ nc~')(-0.415) n - '  E (0.857, 0.858) 

n = l  

20 
~~ = ~ n ( n  - 1)c~')(-0.415) n-2 r (2.29, 2.30) 

n = 2  

Taking into account the bounds (3.2) we get 

7/',(to) e (0.83, 0.89) (3.3) 

Furthermore, we have 

Vt E I~ 

Hence we get 

3 i i i  I~/](t) - ~',(to) I < 5 x 10 -3 IB'l'(to)l + 5 x 10- max T/, (t)[] 
t < l  " ' J  

< 5 X 10-3[IT/~~ + Inff"(to)l 

+ 5 x 10-3(177 + 63)] 

V I  ~ 11 ~q'l(t) ~ (0.80, 0.92) 

Analogous computations show that 

Vt E I, ,~'l(t) E (6.3, 6.8) 

Vt C 12 ~-[ -0 .61,  - 0 .57 ]  T/~(t) ~ (0.45,0.60), 

By collecting together (3.3), (3.4), (3.5) we have 

o.8 n',(0 
V t E I  1 0.11 <(5_-.8 < ~ - ~  < . <0 .15  

0 6  
V t e I  2 0.75 < - -  < ~  < 0--~ = 2  

(3.4) 

(0.3, 0.6) 
(3.5) 

(3.6) 

< 5 X 10-312.3 + 1.1 + 5 X 10 -3 X 240] 

= 2 . 3  X 10 -2 
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The last inequalities sh6w that any intersection between T l ( I 1 )  and T2( I2 )  

must be transversal. In order to prove that such an intersection actually 
exists, it suffices to prove that 

Y(Q,) < y(P,) < y(P2) < Y(Q2) 
(3.7) 

x(P,) < x(Q,) < x(Q2) < x(P2) 

The inequalities (3.7), indeed, imply that,yl(I 0 and 72(12) connect different 
pairs of opposite sides of the rectangle A = (x (P  0 ~< x ~< x(P2); Y(QO 
< y ~< y(Q2)}; since, by (3.4), (Y5), V1(I1) and 72(12)  a r e  contained in A, 
they must intersect. 

Explicit computations, together with the estimates given in Appendix 
B, give 

42~ 0.42) E (0.3025, 0.3026), 

(~o(_0.41) E (0.3683, 0.3684), 

(22~ - 0.61) E (0.3274, 0.3275), 

42~ - 0.57) E (0.3465, 0.3466), 

7/2~ - 0.42) ~ ( - 0.2599, - 0.2598) 

7/2~ 0.41) ~ ( -0 .2513, -0 .2512)  

rt2~ - 0.61) E ( - 0.2677, - 0.2676) 

~o(  _ 0.57) E ( - 0.2464, - 0.2463) 

Taking into account the first of (3.2) and the analogous inequality 

max [(ff(t)] ~<�89 -2 
Itl<~, ' 

we get that the coordinates of P1, P2, Q1, Q2 actually satisfy (3.7). 

4. SOME REMARKS ON THE PICTURES 

In order to draw a picture of ~,~ and ]/2, we have computed the series 
(2.4) truncated at the term n = 100 for ]t] < 1, and we have continued by 
iterating (2.1) for larger values of t. 

This procedure rapidly gives the full picture of the image of ~q, since 
its closure, Im ~fi, is a set of Lebesgue measure zero (since it is a bounded 2 
T-invariant measurable set) which, on the scale of the picture, coincides 
with a segment of 71 corresponding to a short interval in t (say It[ < 20). In 
the case a = 1.4, b = 0.3 (Figs. 1 and 2) Im 7t seems to coincide with the 
strange attractor observed by H~non (it is believed that the attractor 
actually coincides with Im70.  More generally the attractor appears to be 
contained in Im 71; in particular for a = 1.3, b = 0.3, where there is known 

2 In the case a = 1.4 this is a consequence of the fact, proved in Ref. 1, that P0 is internal to a 
bounded  region mapped into itself by T. There is numerical  evidence (and it seems not  too 
difficult to prove) that the same statement holds for a = 1.3. 
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A=I .3  B = 0 . 3  
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Fig. 2. 
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Yl and the intersections of 72( -5  X 10 8, 2) with the rectangle [ - 2 . 3  < x < 2.8; - 2  
< y < 2 ] f o r a = l . 4 ,  b = 0 . 3 .  
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A=I .4  B = 0 . 3  
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Fig. 3. y] and the intersections of "/2(--5 X 10 8, 2) with the rectangle [ - 2 . 3  < x < 2.8; - 2  
< y ~< 2] for a = 1,3, b = 0.3. The crosses indicate the seven points of the stable cycle. 
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to exist an attracting cycle of period seven, the points of this cycle (marked 
in Fig. 3 with a cross) belong to Im 71. 

We remark that the existence of an open set in the plane which is 
attracted by Ira yl is an almost obvious consequence of the existence of 
homoclinic points of T. Consider, indeed, the region A of the plane which 
is bounded by 72 and 7~, where 7~ [7~] is the segment of 71 ['/2] contained 
between P0 and a given homoclinic point O. If P ~ A, T~P ~ TkA and the 
distance between TkP and the boundary 6T~A of TkA goes to zero as k 
goes to infinity (since the Jacobian of T is constant and less than unity). On 
the other hand, for k > 0, 

8T~A = r~vF u r~v~ ' c v, u r~v~ ' 

since the length of Tk~,~ goes to zero as k goes to infinity, the previous 
statement follows. 

The picture of Im Y2 is more difficult to obtain. For positive values of t 
72 rapidly diverges, whereas 7 2 ( - m , 0 )  appears to be dense in an un- 
bounded region of positive Lebesgue measure. In Figs. 2 and 3 we have 
drawn the intersection of 72(-5  • 108, 2) with a rectangle R containing 
Im71. These pictures are somewhat difficult to obtain because most 
"returns" of 72 in R occur in very short t intervals (of length even less than 
0.2) whereas for other values of t in the interval [ - 5  • 10s,2] the coordi- 
nates of 72 assume values exceeding the capacity of the computer. 

Figure 2 is compatible with the conjecture that Im 3'2 coincides with the 
basin of attraction of Im71, whereas in Figure 3 some white regions 
containing the points of the attracting cycle are visible. 
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A P P E N D I X  A 

First we prove the bound 

V n ) 6  

We have 

[ ]~n,1 [ < ~(1"9)  -n  (A.1) 

IBo,,[ < ab-'l~,f-~(1 -I~,l-~+')-~(1 -I~:11~,l -~) ' 

< ~b-'J~,l ~(1 - I ~ , 1 - ~ ) - ' ( 1  -J~: l  I~,f-6) -I 
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S i n c e a =  1.4, b=0 .3 ,  a l =  -1.9237 . . . .  a 2 = 0 . 1 5 5 9 . . .  we get 

[/3,,]1 < ~(1.9)-n(1.92/1.9)-6[ 1 - (1.9)-5]-111 - 0.16(1.9)-6] -1 

<~(1.9)  -" 

Now we prove the following upper bound on the c,(1): 

Vn >/ 1 Ic~(1)1 < min{ 1.6, 12n(1.9) -~ ) (a.2) 

In the case n ~< 5 one can directly verify that le,(l~l < 1.6 < 12n(1.9)-". For 
n/> 6, by using (A.1), (A.2) can be proved by recurrence. We have 

n--I 
le~(])[ < I/3,,11 ~ lek(1~l Ic~(~l < ~ ( 1 . 9 ) - " ( n -  1)(1.6)2< 12n(1.9)-~< 1.6 

k=l  

By using (A.2) we have 

max[T/((t)[< ~ [c~(1)[< ~ 12n(1.9) -n 
Itl <1 n=21 n=21 

Since, if n > 20, n(1.9)-" < (1.64) -" we get 

maxl~lR(t)[< ~ 12(1.64)-"= 12(1.64) -2t 41 < 10 -3 
Itl <I  n=21 

In a analogous way we have 

maxl~/('(t)l < ~ nlc(1) ] < 12 ~ n2(1.9)-~ < 12 ~ (1.42) -~ 
Itl < 1 n=21 n =21 n =21 

< 2.6 • 10 2 

maxlT/~"(t)[< ~ n21c(~1) I< 12 ~ n3(1.9)-~< 12 ~ (1.22)-~< 1.1 
tt[ <1 " n=21 n=21 n=21 

~IaxI'r/IR'"(I)] < ~ n31c(1' I < 12 ~ //4(1.9) n < 12 ~ (1.06) -~ < 63 
n=21 n=21 n=21 

Since la21 < [all, the same inequalities hold, a fortiori, for n~(t). 

APPENDIX B 

In this appendix we give an estimate on the computational error made 
by the computer in calculating the polynomial T/~~ For this purpose we 
premise some remarks: 

(a) All the computations have been performed on a CDC 7600. In this 
computer a floating point number is represented by a 60-bit word: 48 bits 
for the integer coefficient, 11 bits for the exponent, and one for the sign. 
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Furthermore, the machine instructions for multiplication, division, addition 
of numbers of the same sign, whenever the operands are normalized, 
deliver normalized results with a relative error less than or equal to 
u = 2 -47, provided that neither overflow (i.e., an exponent greater than 2 j~ 
nor underflow (i.e., an exponent less than -21~ occurs. 

(b) We have programmed in VORTRAN language. It is possible, by a 
suitable arrangement in the programming, to obtain that the addition of 
normalized operands of opposite sign also provides a normalized result with 
a relative error less than or equal to u. Hence, taking into account that the 
initial data are memorized in normalized form and that neither overflow 
nor underflow can occur, 3 we are sure that each elementary arithmetic 
operation produces a relative error of no more than u. 

(c) Our FORTRAN program includes only elementary arithmetic opera- 
tions (except for the computation of the c7 i, which will be considered later); 
in particular, any exponentiation is performed through a sequence of 
multiplications. A conveniently ordered sequence of FORTRAN instructions 
and an appropriate use of parentheses in the algebraic expressions assure 
that the sequence of machine language operations is the desired one. 

(d) The eigenvalues a I and a 2 ( a  I < 0, a 2 ~ 0) have been represented 
in the computer by two numbers al and if2, obtained by using double 
precision and, then, by truncating the 96-bit expansion of the coefficients to 
the 48 most significant bits. Elementary computations show that the a i can 
be obtained as solutions of the equation 

f ( a )  = ( 3 / a  - 10a + 7) 2= 609 

Then, in order to verify that the relative errors ]a i - 5,il/o~ ~ are less than u, it 
suffices to check the inequalities 

f (81)  < 609 <f[ f f l (1  + u ) ]  (B.1) 
j ~ 2 ( 1  + u)] < 609 < f(c~2) 

Indeed, since f ( a )  decreases in the regions considered, inequalities (B.1) 
imply 

a l (1  + U) < a 1 < a l  

a z < a 2 < ~ 2 (  1 + u )  

Since a~ < O, a 2 > O, we get 
OL 1 

0/1 < ~1 < ~ < a l (1  -- u) 

(B.2) ot 2 
a2 ( l  -- U) < ~ < ~2 < a2 

3 This can easily be verified considering the numerical values of the fi,,,i and c~ i) for i = 1,2, 
n < 20; in particular, 10 -43 < [c(O t < 2. 
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The inequalities (B.1) have been checked by using double precision. Since 
all the values obtained by the computer for fig@ f[8i(1 + u)], differ from 
609 more than 2-51•  609, the errors in calculating the function f are 
clearly irrelevant to our purpose. 

The inequalities (B.2) and the above remarks imply that the /3n. i are 
represented in the computer by some numbers fi.,i given by 

fin,, = - ~(1  + ~l)2n+Sal-n{ [1 - a1-"+1(1 + ~12)2(~-') 1 

where Inil < u (i = 1,2, 3). W e  have 

fin,l = [ 1  + (2n +6)81][1  al-~+' 1 Bn,1 1 -- al -n+l (2n -- 1)82 

[ a2al~ 2(n + l)83] • 1 1 ~ a2a--~ -n 
where 18/I < u (i = 1,2,3). Since lall > 1.9, la21 < 0.16, we have (for n > 2) 

aln+1 1) a2a~n ( 2 n + 2 )  <0.5  
1 2 ~"--1 -n-+l (2H -- < 1.5, 1 Z Og2"--'-~1 -n  

By using the bounds above we get 

]L, - & ,  
~7,[ .< (2n + 9)u (B.3) 

We put G = g(1)_ c~1), where g(1) is the representation used by the com- 
puter for c~ '). Since c{ 1) = 1, ]c(21)1 = I&, l  < 0.87, we have ~, = 0, ~ 
< 131 fl2,1]u < 12u. For n > 2 we have 

I%j <~ ]C(n')[(1+ [ dn'l- ~Sn'l 

"1- dn, l (n - 2)u + u ~,, g(l)~(,)~ . - k  + 2 (1~1 l a ~ l  + I%-~l 1ci i) 
k=l  k=l  

(B.4) 

By using (B.4) and the Yn given by the computer one can prove, by trivial 
computations, that for any n K 10 IGI < 27u; the same bound holds for any 
n, as one can prove by recurrence by using in (B.4) the bounds given in 
Appendix A. Hence we have Vn, I%1 < c = 2 -40.  

Now we shall estimate the computational error in computing the 
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polynomial ~/~~ It is computed by the recurrence relation 

7 ~ = = 

Hence ~/~(t) is represented in the computer by a number ~ ( t )  such that 

= U "~[ ~'(1) (1 4- U2)(1 4- u 3 ) t ~ k - l ( t ) ]  (B .5 )  ~((t)  (1 + ,: i .2o_ k 4- 

where lull < u (i = 1,2,3). We have 

u ~[c (]) ~ ( t )  = (I 4- 'It 20-k 4- E20 k) 

+ (1 + u,)(1 + u2)(1 + u 3 ) t [ ~ - ' ( t  ) + gk '(t) - ~7~ l(t)] 
Since we are interested in values of t such that I(1 + ul)(1 + u2)(l + u2)t I 
< 1, we get 

I ~ ( t )  - ~ ( t ) l  < ,(1 + u) + ul c('>2o k + Ih~- ' ( t )  - ~ - ' ( t ) l  + 4Ul,l~-'(t)l 
20 20 

[~2~ - r12~ < 2 0 , ( 1  + u) + u ~ ICk(')l + a n  ~ /rl~-l(t)l 
k = l  k = l  

2O 

< 21, + u ~ (4k + 1)lc  > I 
k = l  

The values given by the computer show that 
20 

[c~(~ 4- 1) < 27 = e 
k = l  /4 

hence we have 

]~~ - ,/2~ < 22e < 10-10 

Similar estimates hold for the other polynomials considered in Section 3. 
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